
Recitation – Week 5
PRANUT JAIN

Plan for today
Flask introduction and setup.

What is Flask?
Flask is a micro web framework written in Python.

Why a micro web framework ?
-- because it does not require particular tools or libraries.

It does supports extensions like authentication, validation etc.

Installing Flask
Just run:

pip install Flask

Again if you get errors or exception while installing, try running this command as
Administrator(Windows) or Root(Sudo) in Linux.

Running a simple flask app
1. Create a script: (hello.py)

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

return 'Hello, World!'

HTTP://FLASK.POCOO.ORG/DOCS/0.12

2. Run it as

$ export FLASK_APP=hello.py

$ flask run

* Running on http://127.0.0.1:5000/ or localhost:5000

Use set instead of export for Windows.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

http://127.0.0.1:5000/

Understanding the previous script
imported the Flask class

created an instance of this class.

If you are using a single module (as in this example), you should use __name__ because
depending on if it’s started as application or imported as module the name will be different
('__main__' versus the actual import name).

use the route() decorator to tell Flask what URL should trigger our function.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Debugger mode!
The highly useful debugger mode!

The flask script is nice to start a local development server, but you would have to restart it
manually after each change to your code.

If you enable debug support the server will reload itself on code changes, and it will also provide
you with a helpful debugger if things go wrong.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

How to enable debugger mode ?
To enable debug mode you can export the FLASK_DEBUG environment variable before running
the server:

$ export FLASK_DEBUG=1

$ flask run

For Windows, use set instead of export.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

What does it do ?
it activates the debugger

it activates the automatic reloader

it enables the debug mode on the Flask application.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Routing
the route() decorator is used to bind a function to a URL. Here are some basic examples:

@app.route('/')

def index():

return 'Index Page'

@app.route('/hello')

def hello():

return 'Hello, World'

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Variable Rules
To add variable parts to a URL you can mark these special sections as <variable_name>. Such a part is then passed
as a keyword argument to your function. Optionally a converter can be used by specifying a rule with
<converter:variable_name>.

@app.route('/user/<username>')

def show_user_profile(username):

show the user profile for that user

return 'User %s' % username

@app.route('/post/<int:post_id>')

def show_post(post_id):

show the post with the given id, the id is an integer

return 'Post %d' % post_id

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Converters
string accepts any text without a slash (the default)

int accepts integers

float like int but for floating point values

path like the default but also accepts slashes

any matches one of the items provided

uuid accepts UUID strings

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Unique URLs / Redirection Behavior
Rule1:

@app.route('/projects/')

def projects():

return 'The project page’

Rule2:

@app.route('/about')

def about():

return 'The about page’

HTTP://FLASK.POCOO.ORG/DOCS/0.12

How are they different ?
Accessing Rule1 without a trailing slash will cause Flask to redirect to the canonical URL with the
trailing slash.

Accessing the Rule2 with a trailing slash will produce a 404 “Not Found” error.

This behavior allows relative URLs to continue working even if the trailing slash is omitted,
consistent with how Apache and other servers work. Also, the URLs will stay unique, which helps
search engines avoid indexing the same page twice.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Revisiting HTTP methods
GET

The browser tells the server to just get the information stored on that page and send it. This is
probably the most common method.

HEAD

The browser tells the server to get the information, but it is only interested in the headers, not the
content of the page. An application is supposed to handle that as if a GET request was received but to
not deliver the actual content. In Flask you don’t have to deal with that at all, the underlying
Werkzeug library handles that for you.

POST

The browser tells the server that it wants to post some new information to that URL and that the
server must ensure the data is stored and only stored once. This is how HTML forms usually transmit
data to the server.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

PUT

Similar to POST but the server might trigger the store procedure multiple times by overwriting
the old values more than once. Consider that the connection is lost during transmission: in this
situation a system between the browser and the server might receive the request safely a
second time without breaking things. With POST that would not be possible because it must
only be triggered once.

DELETE

Remove the information at the given location.

OPTIONS

Provides a quick way for a client to figure out which methods are supported by this URL. Starting
with Flask 0.6, this is implemented for you automatically.

HTTP://FLASK.POCOO.ORG/DOCS/0.12

Handling different HTTP requests
By default, a route only answers to GET requests, but that can be changed by providing the methods
argument to the route() decorator.

from flask import request

@app.route('/login', methods=['GET', 'POST'])

def login():

if request.method == 'POST':

do_the_login()

else:

show_the_login_form()

HTTP://FLASK.POCOO.ORG/DOCS/0.12

